Grasshoppers inhabiting Higashi-no-Hara grassland, Mt. Sanbe and their ecological distribution

Manabu Yamazoe and Kazuo Hoshikawa

Abstract: An orthopteran faunal survey was carried out at Higashi-no-Hara grassland, Mt. Sanbe, Shimane Prefecture, in autumn 2008, and a total of 3583 individuals belonging to 37 species were recorded. Major 14 species were divided into three groups according to their microhabitat: 1) Miscanthus sinensis dweller represented by Conocephalus gladiatus, 2) Zoysia japonica dweller by Glytobothrus myriamus and 3) disturbed Zoysia dweller by Polianemophilus nikiado. To maintain orthopteran richness, it should be crucial to keep various vegetation types within grassland.

Key words: biodiversity, grassland management, Orthoptera

1. はじめに

バッタ科は草系の代表的な昆虫であり、三篠山は日本でも有数の草系環境である。近年、農村・里山環境の変化により日本中の草系環境が劣化し、草原性生物の衰退が懸念されているが（石井ら，1993；高橋・内藤，1997）、三篠山においてもこのような事態が進行している（Onoda et al., 2006）。一方、ススキをバイオマスエネルギー資源として有効利用するための研究も着手されているが（中川，2002；高橋，2004）、自然環境資源としての草系に注目した場合、そこに生息するバッタ類はその動物相の一部として生物多様性の一翼を担っており、草系管理の方策の検討にあたり、バッタ類がどのように草原環境を利用しているのかを把握しておくことは重要である。我々はシバ草・ススキ草原が接続する三篠山「東の原」に注目し、標高別にバッタ類の生態分布を調査したので報告する。

2. 調査地域および方法

調査地図（図1）は大山・隠岐・三篠山国立公園を構成する三篠山の東麓に位置する「東の原」の草原（面積約40ha：北緯37°8′N，東経132°38′E）である。この草原は観光リフトの北側がススキ草原，南側がシバ草原となっており，周囲はコナラなどを主体とする落葉広葉樹林で囲まれている。シバ草原は主に放牧によって維持されており，調査時のシバ茎高は10－
15cm程度で、ところどころにノイバラ、サルトリ
バ、ラフジなどのパックが散在していた。一方、ス
スキ草原は草嶺によって固められており、秋季には草
高150cm程度に達し、少数のヒヨドリバナ、オカトラ
ノオ、オミチャンなどを混生する。また、これらの
草原にはオキナガサ、カソコソウなどの貴重な草原性
植物が生育している。

この草原に標高の異なる9本のトランセクトを設置
した（図1）。各トランセクトを10m毎に区切り、ラ
インの両側1mで発見されるパック類を全て記録し
た。すなわち、各々のトランセクト毎に一定にならん
dateフォースの方形区を設けた。標識を施していないの
で、同一個体を重複して計数した可能性は排出できな
い（特に個体数が小さい場合）。現場で種名が判断できな
かった個体については採集し、後日、パック・オコロ
ギ・キリギリス大図鑑（日本直拖学会編、2006）、宮武
加納（1992）を参考に同定した。一部に鳴き声によっ
て判断した記録も含まれている。各群のトランセクトのコードと長さは以下のとおり：

<table>
<thead>
<tr>
<th>場所名</th>
<th>標高</th>
<th>シバ紫杉群</th>
<th>ススキ草原</th>
</tr>
</thead>
<tbody>
<tr>
<td>リフト上り場</td>
<td>840 m</td>
<td>TR-A (80 m)</td>
<td>なし</td>
</tr>
<tr>
<td>リフト支支</td>
<td>1番</td>
<td>760 m</td>
<td>TR-B (180 m)</td>
</tr>
<tr>
<td>リフト支支</td>
<td>1番</td>
<td>880 m</td>
<td>TR-C (130 m)</td>
</tr>
<tr>
<td>リフト支支</td>
<td>5番</td>
<td>820 m</td>
<td>TR-D (90 m)</td>
</tr>
<tr>
<td>リフト乗り場</td>
<td>580 m</td>
<td>TR-E (70 m)</td>
<td>TR-δ (80 m)</td>
</tr>
</tbody>
</table>

合計で、シバ紫杉群を550 m (1120 m)，ススキ草原で
440 m (880 m) を調査した。ただし、TR-Aの「シ
バ紫杉群」，TR-δの「ススキ草原」はいずれも遠く、
典型的な草原帯とは異なっていた。調査は3回（2008
年9月23日～24日，9月18日～19日，10月20日～21日）
1名（山添）で実施し、一回の調査にはのべ16時間
を要した。ただし、TR-Bの初回調査は9月13日の事
前調査時に実施した。一部の種（クサヒバリ、カヤコ
オロギ等）を除き、調査期間内に活動期の終焉による
個体数の減少は認められなかったので、解析には3回
の調査の確認個体数を合計した値を用いた。

3. 結 果

I. 確認されたパック類と各群集の類似性
本調査により57種3583個体のパック類が確認され
た（表1）。9群集の類似性を主成分分析とクラスタ
リングにより評価した。主成分分析（相関行列）で
は主成分1，主成分2，主成分3が，それぞれ54%，
33%，11%の分散を説明し，3主成分で98%の分散
を表現できた。図2左に主成分1と主成分2による散
布図を示した。群集は2群，すなわちススキ紫杉依存
群集（TR-α - TR-γ）とその他の2大群に分けられる。
ただし，その他の中では，シバ紫杉依存群集（TR-C
- TR-E）は互いに極めて類似しているが，TR-A，
TR-B，TR-δはやや異なる群集構造であることがわ
かる。同様データをクラスタリングしたところ，同様
の結果が得られた（図2右：ユーリッド距離を用い
たく平均値）。種によって確認個体数に大きな相違が
あるので，それに応じた個体数を換算するためデータ
行列を確認個体数の対数log(n+1)に変換して同様
にクラスタリングしたところ，TR-AとTR-δのクラ
スタは分裂し，前者はTR-Bと，後者はTR-CDEと
クラスタを形成した（図は省略）。

以上の結果から調査した9群集を以下の6群に分け
て解析した。表1

| 高標高 | ススキ紫杉群
（TR-α - TR-γ） | シバ紫杉群
（TR-B） | 道路帯
（TR-A） |
|--------|------------------|------------|------------|
| 低標高 | ススキ紫杉群
（TR-α - TR-δ） | シバ紫杉群
（TR-C, D, E） | 道路帯
（TR-δ） |

II. 各群集の優占種および多様度
表1下に各群の確認個体数，種数，平均多様度，均
衡度を示した。確認個数は標高毎の道端群（TR-A：
16種）を除き，22～25種ではほとんど同じと言える。
しかし，均等度には大きな差があり，「東の原」草
原帯の中で大面積を占めているであろう高標高ススキ
紫杉群（TR-α，TR-β），低標高シバ紫杉群（TR-C，
TR-D，TR-E）のJ値は，0.54～0.55と極めて低い
値であった。これは前者ではオガササキリ，後者では
ヒバパックが確認個体数の大部分を占める単一群
群集構造であるためである。この低い均衡度のため，
両群は確認個数の少ないTR-Aより低い平均多様度
（H′=1.74 nit）を示した。

各群の優占種を定義（理学の百分率法）により抽出
した。表1において，優占種は高い値を示し，準優占
種は低い値を示した。「東の原」全体をひとつの群
集としてみた場合，その優占種は，ヒバパック，オガ
ササキリ，シバパック，エンガマオロギ，トヨマバ
ッタ，マガリス，ツブレサセオオロギの7種，準優
占種はヒロパネヒバパック，ニシキリガリの2種であっ
た。

ススキ紫杉群（TR-α - TR-γ）はオガササキリ，
ツブレサセオオロギの多産とヒバパック，ヒロパネヒ
バパックの事実上の欠如によって特徴付けられ，シバ
表1 三罌山渓の原における秋季（9・10月）のバタク群集、各トランセクトにおける確認個体数を示す。トランセクトを6部に分ける（図2参照）、群集の保有種（高い割合）、頻度優占種（低い割合）を区分した。

<table>
<thead>
<tr>
<th>#</th>
<th>学名</th>
<th>科名</th>
<th>TR-A</th>
<th>TR-B</th>
<th>TR-C</th>
<th>TR-D</th>
<th>TR-E</th>
<th>TR-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Glyptothorax maritimus</td>
<td>シマバタ</td>
<td>1082</td>
<td>73</td>
<td>141</td>
<td>275</td>
<td>244</td>
<td>226</td>
</tr>
<tr>
<td>2</td>
<td>Conocaphalus gladiatus</td>
<td>ヒバタカ</td>
<td>682</td>
<td>6</td>
<td>116</td>
<td>16</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Pollonemobius bimukio</td>
<td>スズメバチ</td>
<td>350</td>
<td>105</td>
<td>162</td>
<td>32</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Telegraphus emma</td>
<td>エンマオオガエル</td>
<td>225</td>
<td>2</td>
<td>32</td>
<td>21</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>Locusta migratoria</td>
<td>カブトroach</td>
<td>225</td>
<td>3</td>
<td>14</td>
<td>70</td>
<td>34</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>Dianemobius nigricascens</td>
<td>マグダラガシ</td>
<td>204</td>
<td>39</td>
<td>160</td>
<td>16</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Velarititoridae micado</td>
<td>ムササビガシ</td>
<td>204</td>
<td>10</td>
<td>28</td>
<td>9</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Stenobothrus furatus</td>
<td>ヒナバタ</td>
<td>107</td>
<td>4</td>
<td>8</td>
<td>18</td>
<td>33</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>Gampsocole us buegeri</td>
<td>オオバタ</td>
<td>93</td>
<td>6</td>
<td>19</td>
<td>26</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Acrida cinerea</td>
<td>シロアマガシ</td>
<td>65</td>
<td>0</td>
<td>12</td>
<td>16</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>Systella bifasciata</td>
<td>サザバタ</td>
<td>49</td>
<td>23</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>Melolomphora japonica</td>
<td>スズムシ</td>
<td>48</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Conocaphalus masculus</td>
<td>ボソバタ</td>
<td>47</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>Tetigonia orientalis</td>
<td>ヤブバタ</td>
<td>44</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Loxoblemmus sylves</td>
<td>モリオカメガシ</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Eucorypites japonicus</td>
<td>オオカズラガシ</td>
<td>34</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Oncanthus longicauda</td>
<td>カンター</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Oecideus infernalis</td>
<td>クロバタモドキ</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>19</td>
<td>Echium anguillarum</td>
<td>ユメガシ</td>
<td>14</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Pterona japonica</td>
<td>ウシガシ</td>
<td>12</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>Phaneroptera falcata</td>
<td>ウシガシ</td>
<td>12</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>Ruspolia lineosa</td>
<td>クサバタ</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>Gastrimargus marmoratus</td>
<td>クリスマチバタ</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>Atractomorpha lata</td>
<td>オオバタ</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>Parapodisma setouchiensis</td>
<td>サツオバタ</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Ognovia japonica</td>
<td>ヒナガシ</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>Gonista bicolor</td>
<td>クロコバタモドキ</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>Conocephalus cinnamomeus</td>
<td>ウマバタ</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>Xenorhagrus marmoratus</td>
<td>サツオバタ</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>Tetrix japonica</td>
<td>ハラシバタ</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>Desebua japonica</td>
<td>サツバタ</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>Lepidoptera abicorns</td>
<td>ヒバリガシ</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>Aelopus thalassinus</td>
<td>マグダラガシ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>Kuwayamaeae saeporensis</td>
<td>エノウガシ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>Stethophyma magister</td>
<td>タマゴガシ</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>Munivelis nipponicus</td>
<td>ユーキガシ</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>Ocneta japonica</td>
<td>タケガシ</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

種番号を備えた12種は三族構成。
26. バタクの分布状況は、図2の図に示されるが、標本がないため詳細の測定と調査を要再観察。
スズ、マダラスズ、トノサマバカツも少なかった。スズ
キアリ種は全体的にスズムシ、カンブンが多く、高棕
高ではヤブキリ、低棕高ではモロオカメコオロギが出
った。
一方、低棕高シバダササ属（TR-C-E）ではヒナバッ
タ、ヒロバネヒナバッタ、トノサマバカツが多かった
が、オナガササキリは事実上欠如していた。ショウリョウ
バカツは比較的多かった。しかし、シバ草原高棕高域
（TR-B）は放牧圧が軽く植生が多様なので、前3種が
やや減少する反面、オナガササキリ、シバスズ、マダ
ラスズ、クサヒバリ、カヤコオロギが増加していた。

図3 低棕高の各群血系における確認個体数（3回測定合計）。
右の数字はトランセント単位の合計数。左上からTR-A、TR-B、TR-C、TR-D、TR-E。
右上からTR-α、TR-β、TR-γ、TR-δの順。
であった。TR-Aはオナガササキリの欠如とクサヒバリの多産、TR-Bはマグナスズの欠如とホシササキリの多産に特徴があった。

III. 優占種の生産分布

各トランスセクトの内部が様々な環境でとれてよいのかどうかを方形区単位の確認個体数の変動から検討した。図3に優占7種の方形区毎の確認個体数を示した。ここからトランスセクト毎に平均値（m）と平均こみあい度（m^*）を算出した。

\[m^* = \frac{\sum (x_i (x_i - 1))}{\sum x_i} \]

ただし、x_i は各方形区での確認数で、0個体の方形区は除外。

図4にいくつかの矩形のm－m^*図を示した。バッタがトランスセクト内でランダムに分布している場合（ポアソン分布）、m^*値とm値はほぼ等しくなる。一方、バッタが特定の方形区に集中している場合（集中分布）、m^*値はm値より大きくなる。特定の方形区に集中する原因はいくつか存在するが、本調査の場合はトランスセクト内の環境の異質性を表現していると考えてよい。また、用いた数値は3回調査の全計値であるが（平均こみあい度の概念に抵触）、これは3倍面積

図4 優占4種の方形区あたり平均密度（m）と平均こみあい度（m^*）の関係。
ほとんどどのトランスセクトでバッタはランダムに分布していたが、一部では集中分布であり（白抜き）
トランスセクト内の環境に異質性があることを示唆する。ただし、小さな記号は方形区数が少なく
（n<5）、信頼度が低い。
の方形区の値とみなしてよいだろう。類似した群集、TK-IとTK-E（図2参照）は方形区数が少ないのでまとめた。

ほとんどの優占種は、オナガササキリ（図4右上）のようにランダム分布していたが、以下の3種（図4）では特定のトランセクトで集中分布の傾向が確認された（シバザカ：TR-B：m²/m = 1.30,ヒナバッカ：TR-δ:1.25,TR-DE:1.16,トノサマバッタ：TR-γ:1.20,TR-δ:2.13）。このことは、これらの種にとっては当該トランセクトの環境が似ていることを示唆している（例えば、シバザカにとってはTR-Bは異質な環境から構成されている）。ただし、トノサマバッタのTR-γは出現方形区数が少なく（図3）、真の傾向か否かは不明である。このような異質性はTR-δに認められた他の、TR-Bでは前述のシバザカだけでなく、マダラズやツツレサセコオロギでもやや高いm²/m値が得られている。これらのトランセクト（TR-B,γ,δ）では平均多様度が高い（表1）。

4. 考察

門脇（1994）は三瓶山から29種のバッタ類を記録している。また、林（2007）は鳥取県直郡類の記録を整理し、三瓶山として49種をあげている。今回調査は「東の原」を対象として9-10月の短期間で37種を記録した。そのうち13種が三瓶から入記録であるが（表1）、林（2007）のリストにあらわれている種のうち、以下の16種が確認されなかった：クロフグ、ハナサコフグ、マダラカマドウマ、コバネヒメギ、コバネササキリ、ハヤシノウママイ、セリピササキリ、モモモドキ、アシギロツエムシ、ヤマクマタマキモドキ、エゾシマガシバッタ、ニセハナガヒシバッタ、ヤセヒシバッタ、ヒメヒシバッタ、コバネイナザ、セグロイナザ、また、今回調査時に「北の原」においてハタケノウママイ、ヒメササキリ、ケラを確認しており、これらを併せると、三瓶山では55種が記録されることになるが、ほぼ確実に生息していると推定される種類もイボバッタなど多数残されており、生息確認種数は今後も増加するであろう。

しかし秋季の「東の原」に時空間を設定するならば、今回調査はかなりの精度でバッタ群集を把握できたと考えられ、この群集は草地利用機構あるいは微生環境の異なる3つの側面の集約として把握できる（図5）：ススキ高稜草原に生息する群集（代表種：オナガササキリ）、シバモク草原に生息する群集（ヒ

図5 主要種の生息環境類似度

方形区毎の確率累積分布を用いて主成分分析（相関行列）によりバッタ各種の散布図を描く（ただし、寄与率は1軸12.7%、2軸8.5%と小さい、3軸が認められ、代表種を大きな記号で表示した。エンマコオロギなど小さな記号の種は選別が判断困難で、確認数が30個体以下の20種は図か参考とした（すべて点線枠内に位置する。)
ナバッタ）、裸地や湿地などを交えたシバ草原に生息する群集（シバスズ）。それぞれの代表種に随伴する種は、オナガサササキリが多い方形区にはスズムシ。ツブレサセコオロギ、ヤブキリ、カンタンが多く、ヒナバッタが多い方形区にはヒロバヘヒバッタ、トノサマバッタ、ショウリョウバッタが多数見られた。シバスズはマダラスズ、クサヒバラ、そしてカヤナコラギと共存する傾向があった（図5）。現在の「東の原」に見られるススキ草原（高菜）とシバ草原（低菜）の共存がここに生息するバッタ相を多様化していることは明らかである。

また、一部の種は集中分布する傾向を示し、異質な環境を含むことが示唆されたトランセクト（TR - B, γ , δ）では群集の種構成は多様であった。このことは、たとえ草原タイプが同じであっても、草原の種構成がバッタ相を変化させていることを示している。ススキ草原では刈り取り方法を変えると、群集の種構成が変える（杉，1994）。高い生物多様性を有する草原を維持するには、ある程度のまとまった面積の草原を考えた場合、個一の管理は不適切である。複数の草原タイプが存在し、可能な限り自然（管理方法）にも有効（管理理念）にも多様な草原管理の観点を望ましいと思われる。なお、いわゆる貴重種は低密度の種である場合が多いが、低密度種の保全については別途に個別学的な調査が必要である。

謝辞

本調査を行うにあたり、調査に様々な便宜を図っていただいた三族自然館職員に皆様に感謝いたします。本調査は「山陰地方の昆虫相の解明」の一部として行われ、サンプラントコンサルタント網からの研究資金使用させていただきました。

引用文献

林 再多，2007，鳥取県におけるバッタ・コオロギ・キリギリス類の記録，ホシザキグリーン研究会報告，（10）: 119-141.
石井 猛・植田邦彦・重松敬則，1993，「里山の自然を守る」，171pp。岩倉書院。
円山久志，1994，（2）三族山のバッタ類，星川邦夫（編）「三族山の昆虫相とその保全」，鳥取県昆虫研究会，221pp。
宮武頭夫・加治東樹，1992，「セミ・バッタ」，215pp。保育社。
中川 仁，2002，バイオマスを原料とするメタノール製造技術「農林グリーン1号線」の開発と新産業の創出。農林経済（2002年9月）：2-6。
日本農業学会（編），2006，「バッタ・コオロギ・キリギリス大図鑑」，657pp。北村出版㈱。
高橋孝，2004，試論：野草資源のバイオマス利用について，草地生態，（34）：36-47
高橋孝・内藤和明，1997，半自然草地の植物と保全管理。種生物学研究，（21）：13-26。